A Case Study on Plankton Diversity of Flood Plain Wetland with Special Reference of Barbila *Beel*, Nalbari District, Assam

¹Kamala Deka, ²Bulbuli Acharjee, ³Rezina Ahmed

¹Research Scholar, ²Associate Professor, ²Associate Professor ¹Department of Zoology, ²Department of Zoology ¹University of Science and Technology, Meghalaya, India, ³Cotton University, Guwahati, India.

Abstract: The great nobleman Swami Vivekananda once must have rightly said "Next only to Kashmir, Assam is the most beautiful place in India". Assam state is very much known for its breath taking scenic beauty, rarest flora and fauna. Nalbari district is one of the major part of Brahmaputra valley. Nalbari district with its tropical climate and moderate to heavy rainfall harbours many smaller and larger wetlands where different types of plankton species has been seen. Plankton comprises microscopic organisms (both plant and animals) having very limited or no power of locomotion and living free floating and suspended in open or pelagic waters. The planktons have important role on the productivity of the water body. The present paper work deals with the study on planktons of Barbila *beel* of Nalbari, Assam was carried out for a period of two years, January 2018 to December, 2019. During the study period 53 forms of phyto plankton were identified in five different sites. They belong to five classes – Cyanophyceae, Chlorophyceae, Bacillariophyceae, Euglenophyceae and Dinophyceae. During this period 38 forms of zooplankton were identified and belong to four groups – Rotifers, protozoa, cladocera and copepods.

Index Terms - Phyto plankton, Zoo plankton, Barbila, Pelagic.

I. INTRODUCTION

India is endowed with myriads of flood plain wetlands locally called '*beels*'. Assam has, 1,392 beels spread over more than 100,000 hectare constituting 61% water bodies of the state.

Nalbari district is situated between 26°7' N to 26°50' N and 91°8' E to 91°48' E on the north back of the river Brahmaputra. A total of 1987 hectares area is covered with wetlands consisting of mainly 4 beels such as Kapla, Ghoga, Dubaria and Barbila.

The occurrence of plankton in a particular area indicates special habitats condition and such species are known as biological or ecological indicators since they indicate some very specific conditions of the environment.

The Phytoplankton is consisting of micro and macroscopic suspended or free floating non motile or weakly motile unicellular or colonial or filamentous algae. Phytoplankton bearing photosynthetic pigments make use of the rich organic nutrients available in the ecosystem and synthesized organic matter. Thus the form the base of ecological pyramid. In beels, zooplankton play a vital role in making efficient use of dead and living organic matter. Both zoo and phytoplankton form direct food and there by sustain a substantial portion of plantiphagous fishery of *beel* resources.

II. OBJECTIVES OF THE STUDY

The following objectives have been formulated for the study-

- 1. To study the plankton diversity in the Barbila beel.
- 2. To study the seasonal variation of the plankton community.

III. STUDY AREA

The Barbila *beel* is located in the district of Nalbari, Assam, at the intersection 26°15'10" North parallel of latitude and 91°18'30" East meridian of longitude. It is about 95 Km away from Guwahati and about 10 Km away from Tihu Town. The *beel* covers an area of 407.0 hectare. The *beel* is surrounded by village with about 6000 families of SC, ST and OBC people whose livelihood mainly depend on the fish and other aquatic resources of the *beel*.

IV. METHODS

Plankton samples were collected at random from the water surface of five sites. The samples were collected by the filtering 50 liters of water in each site through a plankton net made of bolting silk (nylobolt no. 25). Filtered plankton samples were fixed and preserved in 4% aquous formaldehyde solution and the plankton boottles were well labeled. In the laboratory 10-20 ml of the collected samples were centrifuged about 15-20 minutes at 1000 rpm. in an electrical centrifuge. The supernatant sample was removed from the centrifuge and the volume was reduced to 8 ml. After centrifugation qualitative and quantitative estimation were done by taking samples in Sedgewick Rafter Counting cell Method. Planktons were studied under light microscope and identified following the works of Kutikova (1970), Kostle (1978), Koste and Shiel (1987, 1989, 1990), Shiel and Kostle (1992, 1993), Segers (1995), De Smet (1997), Sarma and Sarma (1997, 1999, 2000) and Nogrady and Needham (1986), Battish (1992), and Jayashree Datta Munshi, S.P. Roy, J.S. Datta Munshi (2010), Sharma Sumita (2008) and Sharma B.K.

V. RESULTS

During the period of investigation the plankton population were identified in Barbila beel which are listed in the following tables-

Table 1: Phytoplankton Species Class	•	Genera
Class	SI. No.	Genera
Cuananhuassa (Dlua arran alasa)	1 1	Serieulie a
Cyanophyceae (Blue green algae)		Spirulina
	2	Nostoc
	3	Anabaena
	4	Oscillatoria
	5	Synechococeus
	6	Microcystis
	7	Lyngbya
	8	Amphanothece
	9	Rivularia
	10	Nodularia
	11	Peridinium
	12	Ceratium
	13	Microchaete
	14	Gomphosphacria
	15	Scytonema
Chlorophyceae	16	Closterium
	17	Sprirogyra
	18	Docidium
	19	Microspora
	20	Scendesmus
	21	Chlorella
	22	Eudorina
	23	Ulothrix
	24	Zygnema
	25	Volvox
	26	Oedogonium
	27	Pediastrum
	28	Cladophora
	29	Penium
Bacillariophyceae	30	Navicula
	31	Diatoma
	32	Achanthes
	32	Pinnularia
	33	Amphora
	35	Cymbella
	36	Neidium
	37	Coloneis
	38	Pleurosigma
	39	Diploneis

	40	Fragillaria
	41	Mastoglia
	42	Gyrosigma
	43	Anomoeneis
	44	Neidium
	45	Surirella
	46	Eunotia
	47	Synendra
	48	Calonies
	49	Euglena
Euglenophyceae	50	Phacus
	51	Colacoium
	52	Ceratium
Dinophyceae (Dinoflage Uates)	53	Peridinium

During the present study 53 forms of phytoplankton were identified in five different sites. They belong to five classes-

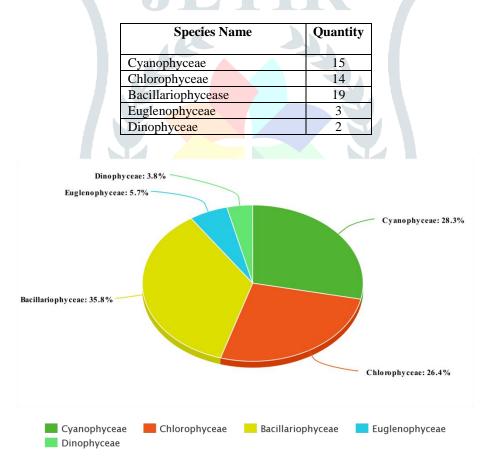


Table 3: Number of Phytoplankton Species Recorded in Barbila beel

Fig 1: Pie Diagram of Phytoplankton Species in Barbila beel

Group	Sl. No.	Genera
Rotifera	1	Polyarthra platiptem
	2	Filinia bory
	3	Brachionus angularis
	4	Brachionus caudatum
	5	Keratella tropica
	6	Keratella cochlearis
	7	Keratella procurva
	8	Keratella quadrata
	9	Plationus patulus
	10	Epiphanes brachionus
	11	Mytilina ventralis
	12	Lepadella ovalis
	13	Lepadella patella
	14	Brachionus bidentatus
	15	Testudinella patina
	16	Filinia saltator
	17	Conochilus unicornis.
Protozoa	18	Difugia
	19	Arcella
	20	Centropryxis
	21	Euglypha
	22	Pandorina
	23	Nabela
Cladocera	24	Daphnia
	25	Moina
	26	Bosmina
	27	Ceriodaphnia
	28	Macrothrix
	29	Oxyurella
	30	Acroperus
Copepods	31	Nauplii
	32	Mesocyclops
	33	Neodiaptomus
	34	Cyclops muller
	35	Eucyclops
	36	Heliodiaptomus
	37	Tropocyclops
	38	Microcyclops

During the study period 38 forms of Zooplankton were identified in five different sites. They belong to four groups.

Table 4: Number of Zooplankton Species Recorded in Barbila beel

Species Name	Quantity
Rotifer	17
Protozoa	6
Cladocera	7
Copedods	8

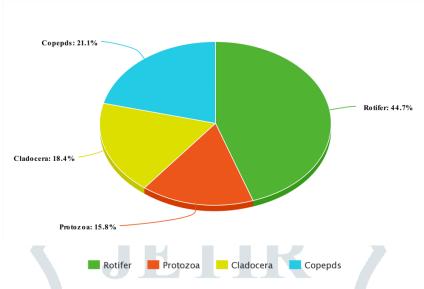


Fig 2: Pie Diagram of Zooplankton Species in Barbila beel

Table 5: Seasonal Variation and Percentage	Composition in nu	umerical values of different gro	ups of Phytoplankton of Barbila <i>beel</i>
C			

.

Season	Year	Sites	Total Phytopla nkton Unit/I Av.	Cyar e Unit	nophycea /I (%)	Chlor Unit/I	ophyceae [(%)	Bacil ceae Unit,	llariophy /I (%)	Eug ceae Uni		Dine e Unit	ophycea t/I (%)
Pre		S-1	335	113	(33.73)	146	(43.58)	53	(15.82)	14	(4.17)	09	(2.68)
Monso on		S-2	327	99	(30.27)	140	(42.81)	65	(19.87)	12	(3.66)	11	(3.36)
(March		S-3	348	110	(31.60)	141	(40.51)	63	(18.10)	15	(4.31)	19	(5.45)
, April,	2018	S-4	348	116	(33.33)	139	(39.94)	59	(16.95)	20	(2.88)	14	(4.02)
May)		S-5	312	89	(28.52)	142	(45.51)	60	(19.23)	09	(2.88)	12	(3.84)
		Total	1670 / 334.0	527	(31.56)	708	(42.39)	300	(17.96)	70	(4.19)	65	(3.89)
Monso		S-1	358	113	(31.56)	155	(43.20)	58	(16.20)	15	(4.18)	17	(4.74)
on (June,		S-2	288	104	(36.11)	130	(45.13)	28	(9.72)	12	(4.16)	14	(4.86)
July,	2018	S-3	324	119	(36.72)	132	(40.74)	45	(13.88)	15	(4.62)	13	(4.01)
August		S-4	328	120	(36.58)	135	(41.15)	51	(15.54)	07	(2.13)	15	(4.57)
)		S-5	261	95	(36.39)	102	(39.08)	39	(14.94)	14	(5.36)	11	(4.21)
		Total	1559 / 311.8	551	(35.34)	654	(41.94)	221	(14.17)	63	(4.04)	70	(4.49)
Retreat		S-1	324	98	(30.24)	121	(37.34)	67	(20.67)	20	(6.17)	18	(5.55)
ing Monso		S-2	266	85	(31.95)	93	(34.96)	60	(22.55)	17	(6.39)	11	(4.13)
on		S-3	227	75	(33.03)	83	(36.56)	51	(22.46)	10	(4.40)	08	(3.52)
(Sept,	2018	S-4	266	91	(34.21)	94	(35.33)	55	(20.67)	12	(4.51)	14	(5.26)
Oct,		S-5	259	85	(32.81)	81	(31.27)	73	(28.18)	09	(3.47)	11	(4.24)
Nov)		Total	1342 / 268.4	434	(32.33)	472	(35.17)	306	(22.80)	68	(5.06)	62	(4.61)
Winter		S-1	280	93	(33.21)	99	(35.35)	65	(23.21)	13	(4.64)	10	(3.57)
(Dec,	2018	S-2	225	75	(33.33)	82	(36.44)	40	(17.77)	15	(6.66)	13	(5.77)
Jan, Feb)	2018	S-3	208	71	(34.13)	70	(33.65)	45	(21.63)	10	(4.80)	12	(5.76)
,		S-4	212	73	(34.43)	78	(36.79)	39	(18.39)	13	(6.13)	09	(4.24)

JETIR2004170 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 1258

© 2020 JETIR April 2020, Volume 7, Issue 4

www.jetir.org (ISSN-2349-5162)

S-5	201	70	(34.82)	73	(36.21)	35	(17.41)	11	(5.47)	12	(5.97)
Total	1126 / 225.20	382	(33.92)	402	(35.70)	224	(19.89)	62	(5.50)	56	(4.97)

Seaso n	Year Kton		-	Cyanophyceae Unit/I (%)		ophyceae (%)	ceae	Bacillariophy ceae Unit/I (%)		Euglenophy ceae Unit/I (%)		Dinophyceae Unit/I (%)	
Pre		S-1	346	110	(31.79)	170	(49.13)	40	(11.56)	15	(4.33)	11	(3.17)
Mons oon		S-2	342	113	(33.04)	165	(48.24)	41	(11.98)	13	(3.80)	10	(2.92)
(Marc		S-3	343	117	(34.11)	160	(46.64)	43	(12.53)	12	(3.49)	11	(3.21)
h,	2019	S-4	338	113	(33.43)	162	(47.92)	40	(11.83)	13	(3.84)	10	(2.95)
April,		S-5	306	103	(33.66)	150	(49.01)	35	(11.43)	10	(3.26)	8	(2.61)
May)		Tot al	1675 / 335.0	556	(33.19)	807	(48.26)	199	(11.88)	63	(3.76)	50	(2.98)
Mons		S-1	451	120	(26.60)	161	(35.69)	43	(9.53)	16	(3.54)	11	(2.43)
oon		S-2	293	103	(35.15)	138	(47.09)	25	(8.53)	15	(5.11)	12	(4.09)
(June, July,		S-3	311	112	(36.01)	135	(43.40)	37	(11.89)	16	(5.14)	11	(3.53)
Augu	2019	S-4	301	89	(29.56)	145	(48.17)	39	(12.95)	15	(4.98)	13	(4.31)
st)		S-5	297	88	(29.62)	148	(49.83)	-35	(11.78)	16	(5.38)	10	(3.36)
		Tot al	1653 / 330.6	512	(30.97)	727	(43.98)	179	(10.82)	78	(4.71)	57	(3.44)
Retre		S-1	367	96	(26.15)	115	(31.33)	32	(8.71)	16	(4.35)	08	(2.17)
ating		S-2	275	103	(37.45)	118	(42.90)	30	(10.90)	15	(5.45)	09	(3.27)
Mons oon		S-3	270	88	(32.59)	119	(44.07)	35	(12.96)	17	(6.29)	11	(4.07)
(Sept,	2019	S-4	271	85	(31.36)	125	(46.12)	33	(12.17)	18	(6.65)	10	(3.69)
Oct,		S-5	252	80	(31.7 <mark>4</mark>)	115	(45.63)	31	(12.30)	18	(7.14)	08	(3.17)
Nov)		Tot al	1435 /287.0	452	(31.49)	<mark>592</mark>	(41.25)	161	(161.21)	84	(5.85)	46	(3.20)

Table 6: Seasonal Variation and Percentage Composition in numerical values of different groups of Phytoplankton of Barbila beel

Table 7: Seasonal Variation and Percentage Composition in numerical values of different groups of Zooplankton of Barbila beel

Seas on	Year	Sites	Total Zooplankton Unit/I Av.	Cope Unit/I		Rotife Unit/I	ra (%)	Clad Unit/	ocera I (%)	Proto Unit/	
Pre		S-1	177	75	(42.37)	60	(40.81)	30	(16.94)	12	(6.77)
Mon soon		S-2	186	79	(42.47)	68	(36.55)	25	(13.44)	14	(7.52)
(Mar		S-3	172	73	(42.44)	63	(36.62)	26	(15.11)	10	(5.81)
ch,	2018	S-4	167	76	(45.50)	55	(32.93)	23	(23.77)	13	(7.78)
April		S-5	152	70	(46.05)	51	(33.55)	21	(13.81)	10	(6.57)
, May)		Total	854 / 170.80	373	(43.67)	297	(34.77)	125	(14.63)	59	(6.90)
Mon		S-1	161	68	(42.23)	57	(35.40)	25	(15.52)	11	(6.83)
soon		S-2	159	71	(44.65)	55	(34.59)	23	(14.46)	10	(6.28)
(Jun e,	2010	S-3	155	65	(41.93)	52	(33.54)	26	(16.77)	12	(7.74)
July,	2018	S-4	146	63	(43.15)	51	(34.93)	22	(15.06)	10	(6.84)
Aug		S-5	142	60	(42.25)	53	(37.32)	18	(12.67)	11	(7.74)
ust)		Total	763 / 152.60	327	(42.85)	268	(35.12)	114	(14.94)	54	(7.07)
Retr		S-1	193	75	(38.86)	78	(40.41)	30	(15.54)	10	(5.18)
eatin		S-2	202	80	(39.60)	75	(37.12)	35	(17.32)	12	(5.94)
g Mon	2018	S-3	189	73	(38.62)	71	(37.56)	32	(16.93)	13	(6.87)
soon		S-4	193	78	(40.41)	70	(36.26)	33	(17.09)	12	(6.21)
(Sept		S-5	182	70	(38.46)	73	(40.10)	31	(17.03)	08	(4.39)

JETIR2004170 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1259

© 2020 JETIR April 2020, Volume 7, Issue 4

www.jetir.org (ISSN-2349-5162)

, Oct, Nov)		Total	959 / 191.8	376	(39.20)	367	(38.26)	161	(16.78)	55	(5.73)
Wint		S-1	196	80	(40.81)	67	(34.18)	35	(17.85)	14	(7.14)
er (Daa		S-2	189	83	(43.91)	62	(32.80)	33	(17.46)	11	(5.82)
(Dec , Jan,	2010	S-3	199	82	(41.20)	68	(34.17)	36	(18.09)	13	(6.53)
Feb)	2018	S-4	189	87	(46.03)	63	(33.33)	31	(16.40)	08	(4.23)
		S-5	176	76	(43.18)	60	(34.09)	30	(17.04)	10	(5.68)
		Total	949 / 189.80	408	(42.99)	320	(33.71)	165	(17.38)	56	(5.90)

Table 8: Seasonal Variation and Percentage Composition in numerical values of different groups of Zooplankton of Barbila beel

Seas on	Year	Sites	Total Zooplankton Unit/I Av.	Cope Unit/I	•	Rotife Unit/I		Clad Unit/	ocera I (%)	Proto Unit/	
Pre		S-1	192	71	(36.97)	66	(34.37)	45	(23.43)	10	(5.20)
Mon soon		S-2	189	69	(34.84)	65	(34.39)	42	(22.22)	13	(6.87)
(Mar		S-3	191	71	(37.17)	62	(32.46)	47	(24.60)	11	(5.75)
ch,	2019	S-4	188	73	(38.82)	60	(31.91)	43	(22.87)	12	(6.38)
Apri		S-5	201	75	(37.31)	63	(31.34)	49	(24.37)	14	(6.96)
l, May		Total	961 / 192.2	359	(37.35)	316	(32.88)	226	(23.51)	60	(6.24)
) Mon		S-1	176	67	(38.06)	59	(33.52)	41	(23.29)	09	(5.11)
soon		S-2	180	65	(36.11)	61	(33.88)	42	(23.33)	12	(6.66)
(Jun e,	2010	S-3	179	68	(37.98)	60 <	(33.51)	40	(22.34)	11	(6.14)
July,	2019	S-4	176	66	(37.50)	55	(31.25)	45	(25.56)	10	(5.68)
Aug		S-5	185	70	(37.8 <mark>3</mark>)	59	(31.89)	43	(23.24)	13	(7.02)
ust)		Total	896 / 179.2	336	(37.50)	294	(32.81)	211	(23.54)	55	(6.13)
Retr		S-1	174	74	(42.52)	51	(29.31)	31	(17.81)	18	(10.34)
eatin		S-2	190	83	(43.68)	53	(27.89)	33	(17.36)	21	(11.05)
g Mon		S-3	183	81	(44.26)	49	(26.77)	30	(16.39)	23	(12.56)
soon	2019	S-4	187	78	(41.7 <mark>1)</mark>	57	(30.48)	35	(18.71)	17	(9.09)
(Sep		S-5	225	89	(39.5 <mark>5)</mark>	38	(16.88)	28	(12.44)	20	(8.88)
t, Oct, Nov)		Total	959 / 191.8	405	(42.23)	248	(25.86)	157	(16.37)	99	(10.32)

VI. ANALYSIS OF THE RESULTS

From the table 1, 53 forms of phytoplankton has been identified from the collected samples from five steps in four different reasons. They belong to 5 classes- cyanophyceae (Blue green algae, 15 species), chlorophyceae (14 species), bacillariophycease (19 species), euglenophyceae (3 species) and dinophyceae (2 species).

A total number of 15 species of cyanophyceae were recorded during the course of study. They were Spirulina, Nostoc, Anabaena, Oscillatoria, Synechococeus, Microcystis, Lyngbya, Amphanothece, Rivularia, Nodularia, Peridinium, Ceratium, Microchaete, Gomphosphacria and Scytonema. In the chlorophyceae class we have recorded total 14 number of species in Barbila beel, they were-Closterium, Sprirogyra, Docidium, Microspora, Scendesmus, Chlorella, Eudorina, Ulothrix, Zygnema, Volvox, Oedogonium, Pediastrum, Cladophora and Penium. There were 19 species are included in bacillariophycease, they are –Navicula, Diatoma, Achanthes, Pinnularia, Amphora, Cymbella, Neidium, Coloneis, Pleurosigma, Diploneis, Fragillaria, Mastoglia, Gyrosigma, Anomoeneis, Neidium, Surirella, Eunotia, Synendra, Calonies and Euglena. In Euglenophyceae there were only three species are identified, they were-Phacus, Colacoium and Ceratium. Also in case of Dinophyceae only one species is found identified as Peridinium.

From the table 3 we have showed the various types of zooplankton species. In that table, a total number of 38 forms were identified in five different sites and they were belonging to four groups. The rotifera groups exhibited the rich diversity among the zooplankton and poor diversity in protozoa. In the rotifer group we have identified 17 species and they were-*Polyarthra platiptem, Filinia bory, Brachionus angularis, Brachionus caudatum, Keratella tropica, Keratella cochlearis, Keratella procurva, Keratella quadrata, Plationus patulus, Epiphanes brachionus, Mytilina ventralis, Lepadella ovalis, Lepadella patella, Brachionus bidentatus, Testudinella patina, Filinia saltator* and *Conochilus unicornis.* In case of protozoa group we have identified 6 different species and they were listed below as – *Difugia, Arcella, Centropryxis, Euglypha, Pandorina* and *Nabela.* In cladocera groups we have found 7 species and they were *Daphnia, Moina, Bosmina, Ceriodaphnia, Macrothrix, Oxyurella* and *Acroperus.* In case of copepods groups there are 8 species, they were-*Nauplii, Mesocyclops, Neodiaptomus, Cyclops muller, Eucyclops, Heliodiaptomus, Tropocyclops* and *Microcyclops.*

© 2020 JETIR April 2020, Volume 7, Issue 4

www.jetir.org (ISSN-2349-5162)

The average number/unit per liter of phytoplankton population in site 1, 2, 3, 4 and 5 during the pre-monsoon periods of the first and second year of observation was 1670/334 and 1675/335 u/l respectively. During the monsoon seasons of the first and second year of observation the phytoplankton population was 1559/311 and 1653/330 u/l respectively. The average numbers/unit per liter of phytoplankton population in the site 1, 2, 3, 4 and 5 during the retreating monsoon seasons was 1342/268 and 1435/287 u/l respectively during the first and second years of observation. During the winter season of the first year of observation the phytoplankton population was 1126/25. The highest population was found in pre-monsoon seasons of second year and followed by the pre-monsoon season of first year. The lowest population is found in winter season.

The average number/unit per liter of zooplankton population in site 1, 2, 3, 4 and 5 during the pre-monsoon periods of the first and second year observation was 854/170 and 961/192 u/l respectively. From the observation it was found that the population of zooplankton in pre monsoon season were more in the first year and followed by the second year. During the monsoon seasons of the first and second year of observation, the zoo plankton population was 763/152 and 896/179 respectively. The average numbers/unit per liter of zooplankton population in the five sites during the retreating seasons was 959/191 and 959/191 respectively. During the two years observation it was found that the average population of zooplankton in retreating monsoon was same. During the winter season of the first year observation the zooplankton population was 947/189. The number of zooplankton counted in different seasons was more in the second year than the first year.

VII. CONCLUSION

The plankton community play an important part in determining the productivity of ecosystem of flood plain wetland. The abundance of plankton are also dependent on the environment of the *beel*. It is well known fact that a number of physic-chemical factors govern the growth and abundance of plankton population.

The present study revealed that the seasonal variation in plankton population is seen in different sites. Seasonal variation is suggested that the favorable period of plankton in Barbila *beel* were from April to October when nutrients accumulations from fresh water run off due to monsoon rainfall. The abundance of the plankton population indicate the productivity of water body of the *beel*.

REFERENCES

[1] Battish, S. K. (1992). Freshwater zooplankton of India. Oxford & IBH Publishing Company.

[2] J.S. Datta Munshi, Jayashree Datta Munshi, S.P. Roy (2010). Manual of Fresh Water Biota, Narendra Publishing House, New Delhi

[3] Edmondson, W. T. (1959). Methods and Equiment in Freshwater biology 2nd ed. John Willey and Sons. Inc., NewYork, 1202.

[4] Sharma, S., & Sharma, B. K. (2008). Zooplankton diversity in floodplain lakes of Assam. Zoological Survey of India.

[5] Needham, J. G., & Needham, P. R. (1972). A Guide to the Study of Fresh-water Biology: rev. and Enl. Holden-Day.

[6] Kutikova, L. A. (1970). The rotifer fauna of the USSR. Fauna SSSR 104. Academia Nauk (in Russian).

